Altcoin Prices :: Android
Altcoin Prices is the one and only free as in freedoms cryptocurrencies portfolio tracker app for android. Find out more at: altcoinprices.uwot.eu
*Sell not virtue to purchase wealth, nor Liberty to purchase power*
Altcoin Prices is the one and only free as in freedoms cryptocurrencies portfolio tracker app for android. Find out more at: altcoinprices.uwot.eu
AMD Ryzen-info is a small Python script I wrote to monitor the main hardware system information of an AMD Ryzen system running on a recent version of Linux kernel. It relies on dmidecode and lm_sensors to gather the needed information, to get correct voltage and temperature readings it is critical that the most up to date version of the it87 kernel module is installed; Python version 3.5 or higher is also hard requirement. Edit /etc/sysconfig/lm_sensors to make it load it87 modules at boot: …
I have been fighting for years with smartd but I really never managed to configure it the way I want. While I certainly am not backblaze, I still have quite a few hard disks I would like to monitor and be able to replace before they actually die. I hacked up a small Python script to query some SMART attributes and send me an email in case something funky is going on; to use it just put in /etc/cron.daily and tell cronie to run it. To work correctly the script also needs smartctl and sendmail. …
While being a big fan of Python I am also in the continuous pursuit of better performance. Like it or not, but when seeking for better performance in many cases you have to put away high level framework/programming-languages and go back to basic; many times basic means good old C. After having developed some different Python scripts to calculate the Pi-greco up to a given number of digits (later I will post the most advanced version I came up with) I decided it was time to make a step forward and write it in C. Because I am still away from home this time the test machine instead of being the usual FX-8120 is my Lenovo Thinkpad equipped with a 2.1 GHz 2C4T 3 MB of L3 cache i3-2310M. On Windows the most known C (it also has a C++ wrapper) library for arbitrary precision math is MPIR. One of the most important “features” of the library is that it is written in both C and Assembly, they also provide different versions of the Assembly code, so you can use the one that is specifically written for the CPU architecture of the machine you will run your program on. The full source code of the library can be downloaded, modified and compiled by the user to better suit his needs. The only downside is that the super optimized Assembly code included in the latest stable release of the library ins’t really up to date, in fact there still is no support for Sandy Bridge and AMD Bulldozer CPUs. Anyway I think no one should complain about it, MPIR is an open source project so we can wait for an official release with the added features or get our hands dirty and write the code we need by ourselves. Since I am lazy I will wait for the official team to realease the updated Assembly; since then I can live with the current stuff. Talking about “current stuff” I have noticed that AMD K10 library’s version is much faster than P4, C2D and Nehalem ones even if I am using an Intel Sandy Bridge CPU; and I am not talking about 2-3% faster but 15-20%. Anyway, while the Python - I have the feeling that there still something left here and there, tho I don’t think I can make it as fast as the C implementation is - script (which uses GMPY2) requires 30+ seconds to compute one million digits the program written in C takes only 1.4 seconds to complete the same task. Both programs use the same algorithm: Chudnovsky brothers formula …
For the same exam in which I had to do the LISP project I also had to write a Clausify program in Prolog. Long story short: the goal was to translate a well formed form (WFF or FBF in italian) of a first order logic language in a conjunctive normal form (CNF). congiunzione(and). disgiunzione(or). negazione(not). implicazione(implies). esiste(exist). per_ogni(every). fbf2cnf(FBF, CNFFBF):- atomic(FBF), CNFFBF = FBF, !. fbf2cnf(FBF, CNFFBF):- FBF =.. [X|ListaArgs], semplifica([X|ListaArgs], [], CNFFBF_3_p), semplifica_2(CNFFBF_3_p, [], CNFFBF_4_p), controlla_lista(CNFFBF_4_p, [], CNFFBF_2_p), CNFFBF_2_p =.. [M|Ms], controlla_lista([M|Ms], [], CNFFBF_2), CNFFBF_2 =.. [Y|Ys], semplifica([Y|Ys], [], CNFFBF_3), semplifica_2(CNFFBF_3, [], CNFFBF_4), CNFFBF_R_P =.. CNFFBF_4, not(confronta(CNFFBF_2_p, CNFFBF_2)), fbf2cnf(CNFFBF_R_P, CNFFBF), !. fbf2cnf(FBF, CNFFBF):- FBF =.. [X|ListaArgs], semplifica([X|ListaArgs], [], CNFFBF_3_p), semplifica_2(CNFFBF_3_p, [], CNFFBF_4_p), controlla_lista(CNFFBF_4_p, [], CNFFBF_2_p), CNFFBF_2_p =.. [M|Ms], controlla_lista([M|Ms], [], CNFFBF_2), CNFFBF_2 =.. [Y|Ys], semplifica([Y|Ys], [], CNFFBF_3), semplifica_2(CNFFBF_3, [], CNFFBF_4), CNFFBF =.. CNFFBF_4, !. confronta(CNFFBF, CNFFBF). semplifica([], CNFFBF_R, CNFFBF_R). semplifica([Y|Ys], CNFFBF, CNFFBF_R):- var(Y), append(CNFFBF, [Y], CNFFBF_1), semplifica(Ys, CNFFBF_1, CNFFBF_R), !. semplifica([Y|Ys], CNFFBF, CNFFBF_R):- congiunzione(Y), togli_and(Ys, CNFFBF, CNFFBF_1), append([Y], CNFFBF_1, CNFFBF_R). semplifica([Y|Ys], CNFFBF, CNFFBF_R):- compound(Y), Y =.. [Z|Zs], semplifica([Z|Zs], [], CNFFBF_1), semplifica(Ys, [], CNFFBF_2), R1 =.. CNFFBF_1, append(CNFFBF, [R1], CNFFBF_3), append(CNFFBF_3, CNFFBF_2, CNFFBF_R), !. semplifica([Y|Ys], CNFFBF, CNFFBF_R):- append(CNFFBF, [Y], CNFFBF_1), semplifica(Ys, [], CNFFBF_2), append(CNFFBF_1, CNFFBF_2, CNFFBF_R), !. semplifica_2([], CNFFBF_R, CNFFBF_R). semplifica_2([Y|Ys], CNFFBF, CNFFBF_R):- var(Y), append(CNFFBF, [Y], CNFFBF_1), semplifica_2(Ys, CNFFBF_1, CNFFBF_R), !. semplifica_2([Y|Ys], CNFFBF, CNFFBF_R):- disgiunzione(Y), togli_or(Ys, CNFFBF, CNFFBF_1), append([Y], CNFFBF_1, CNFFBF_R). semplifica_2([Y|Ys], CNFFBF, CNFFBF_R):- compound(Y), Y =.. [Z|Zs], semplifica_2([Z|Zs], [], CNFFBF_1), semplifica_2(Ys, [], CNFFBF_2), R1 =.. CNFFBF_1, append(CNFFBF, [R1], CNFFBF_3), append(CNFFBF_3, CNFFBF_2, CNFFBF_R), !. semplifica_2([Y|Ys], CNFFBF, CNFFBF_R):- append(CNFFBF, [Y], CNFFBF_1), semplifica_2(Ys, [], CNFFBF_2), append(CNFFBF_1, CNFFBF_2, CNFFBF_R), !. togli_and([], CNFFBF_R, CNFFBF_R). togli_and([Y|Ys], CNFFBF, CNFFBF_R):- Y =.. [Z|Zs], congiunzione(Z), togli_and(Zs, CNFFBF, CNFFBF_1), togli_and(Ys, CNFFBF_1, CNFFBF_R), !. togli_and([Y|Ys], CNFFBF, CNFFBF_R):- append(CNFFBF, [Y], CNFFBF_1), togli_and(Ys, CNFFBF_1, CNFFBF_R), !. togli_or([], CNFFBF_R, CNFFBF_R). togli_or([Y|Ys], CNFFBF, CNFFBF_R):- Y =.. [Z|Zs], disgiunzione(Z), togli_or(Zs, CNFFBF, CNFFBF_1), togli_or(Ys, CNFFBF_1, CNFFBF_R), !. togli_or([Y|Ys], CNFFBF, CNFFBF_R):- append(CNFFBF, [Y], CNFFBF_1), togli_or(Ys, CNFFBF_1, CNFFBF_R), !. %% lista vuota controlla_lista([], CNFFBF_R, CNFFBF_R). %% trova and controlla_lista([X|ListaArgs], CNFFBF, CNFFBF_R):- congiunzione(X), count_elements(ListaArgs, N), N >= 2, costruisci_and(ListaArgs, CNFFBF, CNFFBF_1), CNFFBF_R =.. [X|CNFFBF_1], !. %% controllare se or (... and) controlla_lista([X|ListaArgs], CNFFBF, CNFFBF_R):- disgiunzione(X), count_elements(ListaArgs, N), N >= 2, cerca_and(ListaArgs), estrai_parametri(ListaArgs, [], Lista_AND), costruisci_or_and(Lista_AND, [], CNFFBF_R1), append(CNFFBF, CNFFBF_R1, CNFFBF_R2), CNFFBF_R =.. ['and'|CNFFBF_R2], !. %% trova or controlla_lista([X|ListaArgs], CNFFBF, CNFFBF_R):- disgiunzione(X), count_elements(ListaArgs, N), N >= 2, costruisci_or(ListaArgs, [], CNFFBF_1), append(CNFFBF, CNFFBF_1, CNFFBF_2), CNFFBF_R =.. [X|CNFFBF_2], !. %% trova not di not controlla_lista([X,X1|ListaArgs], CNFFBF, CNFFBF_R):- negazione(X), X1 =.. [Y,Y1|Ys], count_elements(Ys, M), M = 0, count_elements(ListaArgs, N), N = 0, negazione(Y), costruisci_not(Y1, CNFFBF, CNFFBF_R), !. %% trova not di atomo controlla_lista([X,X1|ListaArgs], CNFFBF, CNFFBF_R):- negazione(X), count_elements(ListaArgs, N), N = 0, atomic(X1), CNFFBF_1 =.. [X|[X1]], append(CNFFBF, CNFFBF_1, CNFFBF_R), !. %% CASO #1 : not (and (p, q)) = or (not (p), not (q)) controlla_lista([X,X1|ListaArgs], CNFFBF, CNFFBF_R):- negazione(X), count_elements(ListaArgs, N), N = 0, compound(X1), X1 =.. [Y|Ys], congiunzione(Y), costruisci_not_and(Ys, CNFFBF, CNFFBF_1), CNFFBF_R =.. ['or'|CNFFBF_1], !. %% CASO #2 : not (or (p, q)) = and (not (p), not (q)) controlla_lista([X,X1|ListaArgs], CNFFBF, CNFFBF_R):- negazione(X), count_elements(ListaArgs, N), N = 0, compound(X1), X1 =.. [Y|Ys], disgiunzione(Y), costruisci_not_or(Ys, CNFFBF, CNFFBF_1), CNFFBF_R =.. ['and'|CNFFBF_1], !. %% not(every) # not(exist(X, p(X))) = every(X, not(P(X))) controlla_lista([X,X1|ListaArgs], CNFFBF, CNFFBF_R):- negazione(X), count_elements(ListaArgs, N), N = 0, X1 =.. [Y,V,F|Ys], count_elements(Ys, M), M = 0, esiste(Y), CNFFBF_F =.. ['not'|[F]], append([V], [CNFFBF_F], CNFFBF_1), CNFFBF_2 =.. ['every'|CNFFBF_1], CNFFBF_2 =.. [Z|Zs], controlla_lista([Z|Zs], [], CNFFBF_R), !. %% not(every) # not(every(X, p(X))) = exist(X, not(P(X))) controlla_lista([X,X1|ListaArgs], CNFFBF, CNFFBF_R):- negazione(X), count_elements(ListaArgs, N), N = 0, X1 =.. [Y,V,F|Ys], count_elements(Ys, M), M = 0, per_ogni(Y), CNFFBF_F =.. ['not'|[F]], append([V], [CNFFBF_F], CNFFBF_1), CNFFBF_2 =.. ['exist'|CNFFBF_1], CNFFBF_2 =.. [Z|Zs], controlla_lista([Z|Zs], [], CNFFBF_R), !. %% trova un implies # implies(P, Q) = or(not(P), Q) controlla_lista([X,P,Q|ListaArgs], CNFFBF, CNFFBF_R):- implicazione(X), count_elements(ListaArgs, N), N = 0, costruisci_implicazione(P, Q, CNFFBF_R), !. %% trova un exist # exist(Y, every(Y,p(X,Y))) = every(Y, p(sf666(Y), Y)) controlla_lista([X,V,F|ListaArgs], CNFFBF, CNFFBF_R):- esiste(X), count_elements(ListaArgs, N), N = 0, var(V), F =.. [Y,V1,F1|Ys], count_elements(Ys, M), M = 0, per_ogni(Y), skolem_function([V],SF). %% trova un exist # exist(X, p(X)) = p(skv+numero) controlla_lista([X,V,F|ListaArgs], CNFFBF, CNFFBF_R):- esiste(X), count_elements(ListaArgs, N), N = 0, var(V), skolem_function(SK, V), F =.. [Y|Ys], controlla_lista([Y|Ys], [], CNFFBF_R), !. %% trova un every # every(X, p(X)) = p(skv+numero) controlla_lista([X,V,F|ListaArgs], CNFFBF, CNFFBF_R):- per_ogni(X), count_elements(ListaArgs, N), N = 0, var(V), skolem_function(SK, V), F =.. [Y|Ys], controlla_lista([Y|Ys], [], CNFFBF_R), !. %% trova un predicato controlla_lista([X|Xs], CNFFBF, CNFFBF_R):- count_elements(Xs, N), N >= 1, controlla_predicato([X|Xs], CNFFBF, [Y|Ys]), CNFFBF_R =.. [Y|Ys], !. %% trovato un predicato, controlla i suoi elementi controlla_predicato([], CNFFBF_R, CNFFBF_R). controlla_predicato([X|Xs], CNFFBF, CNFFBF_R):- atomic(X), append(CNFFBF, [X], CNFFBF_1), controlla_predicato(Xs, CNFFBF_1, CNFFBF_R), !. controlla_predicato([X|Xs], CNFFBF, CNFFBF_R):- compound(X), X =.. [Y|Ys], controlla_lista([Y|Ys], [], CNFFBF_1), append(CNFFBF, [CNFFBF_1], CNFFBF_2), controlla_predicato(Xs, CNFFBF_2, CNFFBF_R), !. %% trova un and, nel caso gli elementi siano atomi fa l'append a CNFFBF_R %% , altrimenti richiama controlla_lista %% elementi, lista_a_cui_aggiungere, lista_risultato costruisci_and([], CNFFBF_R, CNFFBF_R). costruisci_and([X|Xs], CNFFBF, CNFFBF_R):- atomic(X), append(CNFFBF, [X], CNFFBF_1), costruisci_and(Xs, CNFFBF_1, CNFFBF_R), !. costruisci_and([X|Xs], CNFFBF, CNFFBF_R):- compound(X), X =.. [Y|Ys], controlla_lista([Y|Ys], [], CNFFBF_R1), append(CNFFBF, [CNFFBF_R1], CNFFBF_R2), costruisci_and(Xs, CNFFBF_R2, CNFFBF_R), !. %% trova un or costruisci_or([], CNFFBF_R, CNFFBF_R). costruisci_or([X|Xs], CNFFBF, CNFFBF_R):- atomic(X), append(CNFFBF, [X], CNFFBF_1), costruisci_or(Xs, CNFFBF_1, CNFFBF_R), !. costruisci_or([X|Xs], CNFFBF, CNFFBF_R):- compound(X), X =.. [Y|Ys], controlla_lista([Y|Ys], [], CNFFBF_R1), costruisci_or(Xs, [], CNFFBF_R2), append(CNFFBF, [CNFFBF_R1], CNFFBF_2), append(CNFFBF_2, CNFFBF_R2, CNFFBF_R3), CNFFBF_R3 =.. [Z|Zs], controlla_lista([Z|Zs], [], CNFFBF_R), !. %% trovo un or con dentro almeno un and, allora costruisco le coppie %% Lista_parametri_da_accoppiare, CNFFBF_parziale, CNFFBF_finale costruisci_or_and([], CNFFBF_R, CNFFBF_R). costruisci_or_and([X|Xs], CNFFBF, CNFFBF_R):- accoppia(X, Xs, CNFFBF, CNFFBF_R1), costruisci_or_and(Xs, CNFFBF_R1, CNFFBF_R), !. accoppia(Elem, [], CNFFBF_R, CNFFBF_R). accoppia([], _, CNFFBF_R, CNFFBF_R). accoppia([E|Es], [[Y|Ys]|Xs], CNFFBF, CNFFBF_R):- accoppia_and(E, [Y|Ys], CNFFBF, CNFFBF_1), accoppia_and(E, Xs, CNFFBF_1, CNFFBF_2), accoppia(Es, [[Y|Ys]|Xs], CNFFBF_2, CNFFBF_R), !. accoppia([E|Es], [Y|Ys], CNFFBF, CNFFBF_R):- accoppia_and(E, [Y|Ys], CNFFBF, CNFFBF_1), elementi_lista(Es, [Y|Ys], CNFFBF_1, CNFFBF_R). accoppia(Elem, [[Y|Ys]|Xs], CNFFBF, CNFFBF_R):- append([Elem], [Y], CNFFBF_1), CNFFBF_2 =.. ['or'|CNFFBF_1], append(CNFFBF, [CNFFBF_2], CNFFBF_3), accoppia(Elem, [Ys|Xs], CNFFBF_3, CNFFBF_R), !. accoppia(Elem, [X|Xs], CNFFBF, CNFFBF_R):- accoppia(Elem, Xs, CNFFBF, CNFFBF_R), !. accoppia_and(_, [], CNFFBF_R, CNFFBF_R). accoppia_and(Elem, [[Y|Ys]|Xs], CNFFBF, CNFFBF_R):- accoppia_and(Elem, [Y|Ys], CNFFBF, CNFFBF_1), accoppia_and(Elem, Xs, CNFFBF_1, CNFFBF_R). accoppia_and(Elem, [Y|Ys], CNFFBF, CNFFBF_R):- append([Elem], [Y], CNFFBF_1), CNFFBF_2 =.. ['or'|CNFFBF_1], append(CNFFBF, [CNFFBF_2], CNFFBF_3), accoppia_and(Elem, Ys, CNFFBF_3, CNFFBF_R), !. elementi_lista([], _, CNFFBF_R, CNFFBF_R). elementi_lista([E|Es], [Y|Ys], CNFFBF, CNFFBF_R):- accoppia_and(E, [Y|Ys], CNFFBF, CNFFBF_1), elementi_lista(Es, [Y|Ys], CNFFBF_1, CNFFBF_R). %% estrae i parametri dell'or estrai_parametri([], Lista_R, Lista_R). estrai_parametri([X|Xs], Lista_1, Lista_R):- atomic(X), append(Lista_1, [X], Lista_2), estrai_parametri(Xs, Lista_2, Lista_R), !. estrai_parametri([X|Xs], Lista_1, Lista_R):- compound(X), X =.. [Y|Ys], congiunzione(Y), controlla_lista([Y|Ys], [], Lista_X), Lista_X =.. [Z|Zs], estrai_parametri(Xs, [], Lista_Xs), append(Lista_1, [Zs], Lista_R1), append(Lista_R1, Lista_Xs, Lista_R), !. estrai_parametri([X|Xs], Lista_1, Lista_R):- compound(X), X =.. [Y|Ys], controlla_lista([Y|Ys], [], Lista_X), estrai_parametri(Xs, [], Lista_Xs), append(Lista_1, [Lista_X], Lista_R1), append(Lista_R1, Lista_Xs, Lista_R), !. %% cerca se c'è un and cerca_and([X|Xs]):- atomic(X), cerca_and(Xs), !. cerca_and([X|Xs]):- compound(X), X =.. [Y|Ys], count_elements(Ys, N), N >= 2, congiunzione(Y), !. cerca_and([X|Xs]):- compound(X), X =.. [Y|Ys], cerca_and(Xs), !. %% not è stato trovato, guarda cosa ha come parametro costruisci_not(Y1, CNFFBF, CNFFBF_R):- atomic(Y1), append(CNFFBF, Y1, CNFFBF_R), !. costruisci_not(Y1, CNFFBF, CNFFBF_R):- compound(Y1), Y1 =.. [Z|Zs], controlla_lista([Z|Zs], CNFFBF, CNFFBF_R), !. costruisci_not(Y1, CNFFBF, CNFFBF_R):- Y1 =.. [X|Xs], negazione(X), controlla_lista([X|Xs], CNFFBF, CNFFBF_R), !. %% trova un not che ha come parametro un and costruisci_not_and([], CNFFBF_R, CNFFBF_R). costruisci_not_and([X|Xs], CNFFBF, CNFFBF_R):- atomic(X), CNFFBF_1 =.. ['not'|[X]], append(CNFFBF, [CNFFBF_1], CNFFBF_2), costruisci_not_and(Xs, CNFFBF_2, CNFFBF_R), !. costruisci_not_and([X|Xs], CNFFBF, CNFFBF_R):- compound(X), X =.. [Y|Ys], controlla_lista([Y|Ys], CNFFBF_1, CNFFBF_2), CNFFBF_3 =.. ['not'|[CNFFBF_2]], append(CNFFBF, [CNFFBF_3], CNFFBF_4), costruisci_not_and(Xs, CNFFBF_4, CNFFBF_R), !. %% trova un not che ha come parametro un or costruisci_not_or([], CNFFBF_R, CNFFBF_R). costruisci_not_or([X|Xs], CNFFBF, CNFFBF_R):- atomic(X), CNFFBF_1 =.. ['not'|[X]], append(CNFFBF, [CNFFBF_1], CNFFBF_2), costruisci_not_or(Xs, CNFFBF_2, CNFFBF_R), !. costruisci_not_or([X|Xs], CNFFBF, CNFFBF_R):- compound(X), X =.. [Y|Ys], controlla_lista([Y|Ys], CNFFBF_1, CNFFBF_2), CNFFBF_3 =.. ['not'|[CNFFBF_2]], append(CNFFBF, [CNFFBF_3], CNFFBF_4), costruisci_not_or(Xs, CNFFBF_4, CNFFBF_R), !. %% trova un implies # implies(P, Q) = or(not(P), Q) costruisci_implicazione(P, Q, CNFFBF_R):- atomic(P), atomic(Q), CNFFBF_P =.. ['not'|[P]], append([CNFFBF_P], [Q], CNFFBF_1), CNFFBF_R =.. ['or'|CNFFBF_1]. costruisci_implicazione(P, Q, CNFFBF_R):- atomic(P), compound(Q), CNFFBF_P =.. ['not'|[P]], Q =.. [Y|Ys], controlla_lista([Y|Ys], [], CNFFBF_Q_1), append([CNFFBF_P], [CNFFBF_Q_1], CNFFBF_1), CNFFBF_R =.. ['or'|CNFFBF_1]. costruisci_implicazione(P, Q, CNFFBF_R):- compound(P), atomic(Q), CNFFBF_P =.. ['not'|[P]], CNFFBF_P =.. [X|Xs], controlla_lista([X|Xs], [], CNFFBF_P_1), append([CNFFBF_P_1], [Q], CNFFBF_1), CNFFBF_R =.. ['or'|CNFFBF_1]. costruisci_implicazione(P, Q, CNFFBF_R):- CNFFBF_P =.. ['not'|[P]], CNFFBF_P =.. [X|Xs], controlla_lista([X|Xs], [], CNFFBF_P_1), Q =.. [Y|Ys], controlla_lista([Y|Ys], [], CNFFBF_Q_1), append([CNFFBF_P_1], [CNFFBF_Q_1], CNFFBF_1), CNFFBF_R =.. ['or'|CNFFBF_1]. skolem_variable(V, SK):- var(V), gensym(skv, SK). skolem_function([], SF):- skolem_variable(_, SF). skolem_function([A | ARGS], SF) :- gensym(skf, SF_op), SF =.. [SF_op, A | ARGS]. %% conta gli elementi della lista count_elements([],0). count_elements([X|Xs],N):- count_elements(Xs,M), N is M + 1. %%%% controlla se la FBF è clausola di Horn horn(FBF):- atomic(FBF). horn(FBF):- fbf2cnf(FBF, CNF), CNF =.. [X|Xs], negazione(X). horn(FBF):- fbf2cnf(FBF, CNF), CNF =.. [X|Xs], conta(Xs, 0, N), N < 2. %%%% conta i letterali non negativi conta([], N, N). conta([X|Xs], N, N):- negazione(X). conta([X|Xs], N1, N):- compound(X), X =.. [Y|Ys], negazione(Y), conta(Xs, 0, M), N is N1 + M, !. conta([X|Xs], N1, N):- compound(X), X =.. [Y|Ys], conta(Ys, 0, M0), conta(Xs, 0, M1), M2 is M0 + N1, N is M2 + M1, !. conta([X|Xs], N1, N):- atomic(X), M1 is N1 + 1, conta(Xs, 0, M), N is M1 + M, !. confronta_liste([],[]). confronta_liste([X|Xs],[X|Ys]):- confronta_liste(Xs, Ys), !. I think that’s all. Cheers. …
In the last exams session I had to write a simplified URI parser in LISP. LISP has the well known ability to melt people’s brain, but when you manage to wrap your head around things it becomes quite interesting. The projects for this course are always quite similar, so I assume someone could be interested to see how I did it. Please note that I did everything in no more than 3 or 4 hours, so surely it could have been done better (for example without using defparameter instructions). Anyway it got me a pretty high mark, so I am OK with it. Here is the simplified syntax I had to follow: …
ATI Driver Tweaker is a simple program that allows the user to manage the most important driver settings of ATI videocards. I wrote it because I am tired of all the others tweaking software for ATI graphic cards, quite often they don’t work properly or make 3d programs crash. This program is written in pure C, doesn’t need NET framework or any other kind of crap, doesn’t need to be installed and works on Windows XP, Vista and Seven (both x86 and x64 versions) …